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Weighted Graph
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A weighted graph is a graph with values 
associated to its edges (aka. weights)

They are useful to represent distances, 
costs, penalties, loads, capacities, times…
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Weighted Graph Representations
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U V W X Y Z

U - 5 - - - -

V - - 12 7 - -

W 2 - - - 10 -

X - - 6 - - 4

Y - - - 8 - -

Z - - - 1 - 5
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Weighted Graph Representations
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U (V, 5)

V (W, 12), (X, 7)

W (U, 2), (Y, 10)

X (W, 6), (Z, 4)

Y (X, 8)

Z (X, 1), (Z, 5)
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Shortest Path Problem
02

Finding the shortest path between 
two vertices
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Finding A Shortest Path

Didn't we say that BFS finds the shortest 
path between a pair of vertices in a graph?

Shortest path between vertices W and X? 
Call BFS(𝐺, W) and get the path that visits 
X.
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Finding A Shortest Path

Didn't we say that BFS finds the shortest path 
between a pair of vertices in a graph?

Shortest path between vertices W and X? Call 
BFS(𝐺, W) and get the path that visits X.

There! Shortest path is {W, Y, X} with length 
2.
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Finding A Shortest Path

Didn't we say that BFS finds the shortest path 
between a pair of vertices in a graph?

Shortest path between vertices W and X? Call 
BFS(𝐺, W) and get the path that visits X.

There! Shortest path is {W, Y, X} with length 2.

Is it?
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Shortest Path Problem

Given a weighted digraph 𝐺 = {𝑉, 𝐸} and 
two vertices 𝑢, 𝑣 ∈ 𝑉, we need to find a 
path of minimum total weight between 𝑢
and 𝑣.

Shortest Path Properties:
1. A sub path of a shortest path is itself a 

shortest path.
2. There is a tree of shortest paths from a 

vertex to every other vertex in the graph.
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Property 1 Example
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A sub path of 
a shortest 

path is itself a 
shortest path.
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Property 2 Example
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Source
There is a tree of 

shortest paths 
from a vertex to 

every other vertex 
in the graph.
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Dijkstra’s Algorithm
03

Let’s find them paths
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Edsger W. Dijkstra. "A Note on 
Two Problems in Connexion with 

Graphs." Numerische
Mathematik, vol. 1, pp. 269-271, 

1959.

16https://link.springer.com/article/10.1007/BF01386390
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Dijkstra’s Algorithm

1. Given a digraph 𝐺 = {𝑉, 𝐸} and a source vertex 𝑣 ∈ 𝑉, Dijkstra's algorithm finds the 
shortest path from 𝑣 to every other vertex in the digraph.

2. Dijkstra’s algorithm is a Greedy Algorithm.

3. Assumptions:
• The digraph is connected.
• Edge weights are nonnegative (IMPORTANT)

4. Analogy: Dijkstra’s algorithm grows a “cloud” of vertices, starting with 𝑣, until the cloud 
covers all vertices in 𝐺. In every step of the algorithm, we insert a new vertex into the 
cloud and keep the current shortest distances from 𝑣 to the current vertices in the cloud.
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Edge Relaxation

s

u z

d(u) = 50

d(z) = 75

e: 10

s

u z

d(u) = 50 d(z) = 60
e: 10

d(z) = min{d(z), d(u) + weight(e)}

18



Dijkstra’s 
Shortest Path 

Algorithm

algorithm DijkstraShortestPath(𝐺 𝑉, 𝐸 , 𝑠 ∈ 𝑉)

let dist:𝑉 → ℤ
let prev:𝑉 → 𝑉
let 𝑄 be an empty priority queue

dist[𝑠] ← 0
for each 𝑣 ∈ 𝑉 do

if 𝑣 ≠ 𝑠 then
dist[𝑣] ← ∞

end if
prev[𝑣] ← -1
𝑄.add(dist[𝑣], 𝑣)

end for

while 𝑄 is not empty do
𝑢 ← 𝑄.getMin()
for each 𝑤 ∈ 𝑉 adjacent to 𝑢 still in 𝑄 do

d ← dist[𝑢] + weight(𝑢, 𝑤)
if d < dist[𝑤] then

dist[𝑤] ← d
prev[𝑤] ← 𝑢
𝑄.set(d, 𝑤)

end if
end for

end while

return dist, prev
end algorithm
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Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph
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Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph
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Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph
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Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph
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Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph
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dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph
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Remember: 𝐺 has nonnegative weight 
values.

Observations:
• We assume 𝑄 is a binary heap.
• 𝑄.set(𝑎, 𝑏) updates the location of a 

value 𝑏 based on a new key 𝑎.

Runtime:
• Initializing arrays: 𝑂 𝑉
• Adding vertices to 𝑄: 𝑂 𝑉 log 𝑉
• Checking if a vertex is in 𝑄: 𝑂(1)!
• Resetting values in the arrays (aka. Edge 

relaxation): 𝑂 𝐸
• Resetting values in 𝑄: 𝑂 𝐸 log 𝑉 !

Dijkstra’s Runtime: 𝑂 𝑉 + 𝐸 log 𝑉

We can also say 𝑂 𝐸 log 𝑉 since every 
vertex is connected to at least one edge.

28

algorithm DijkstraShortestPath(𝐺 𝑉, 𝐸 , 𝑠 ∈ 𝑉)

let dist:𝑉 → ℤ
let prev:𝑉 → 𝑉
let 𝑄 be an empty priority queue

dist[𝑠] ← 0
for each 𝑣 ∈ 𝑉 do

if 𝑣 ≠ 𝑠 then
dist[𝑣] ← ∞

end if
prev[𝑣] ← -1
𝑄.add(dist[𝑣], 𝑣)

end for

while 𝑄 is not empty do
𝑢 ← 𝑄.getMin()
for each 𝑤 ∈ 𝑉 adjacent to 𝑢 still in 𝑄 do

d ← dist[𝑢] + weight(𝑢, 𝑤)
if d < dist[𝑤] then

dist[𝑤] ← d
prev[𝑤] ← 𝑢
𝑄.set(d, 𝑤)

end if
end for

end while

return dist, prev
end algorithm



Runtime Considerations

Checking if a vertex is in 𝑄: 𝑂(1)!
The algorithm must maintain a link between vertices and their positions in the 
queue (e.g., an array of size 𝑉 that get updated whenever a vertex changes 
position in 𝑄). This allows checking is a vertex is in 𝑄 in 𝑂(1).

Resetting values in 𝑄: 𝑂 𝐸 log 𝑉 !
When a key gets updated, at most log 𝑉 vertex positions will have to be updated 
as the heap is rearranged. So, updating a key can be done in 𝑂 log 𝑉 .

Internet says Dijkstra’s runtime is 𝑂 𝐸 + 𝑉 log 𝑉
Yes, it is true if we keep track of vertices using a Fibonacci Heap (out of the scope 
of this course) instead of a Priority Queue implemented with a Binary Heap.
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Don’t use Dijkstra’s 
algorithm with 

negative weights

Remember that Dijkstra’s 
algorithm is Greedy. Which means 
the algorithm chooses the best 
option in every iteration.

A negative weight will reduce 
distances to vertices outside of the 
cloud. Inserting a vertex incident 
to a “negative” edge messes up
with the distances already in the 
cloud.

30



Try yo’self
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Spoiler alert: Dijkstra should relax an already relaxed vertex. 31
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We’re done
Do you have any questions?
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