Weighted
Graph

CS 251 - Data Structures
and Algorithms

| Note:
Slides complement the
discussion in class

O

@) O

© © ©

Weighted Graph
When edges have info

Shortest Path Problem
Finding the shortest path
between two vertices

Dijkstra’s Algorithm
Let’s find them paths

Table of Contents

01

Welghted Graph

eeeeeeeeeeeeeeee

M Weighted Graph

A weighted graph is a graph with values
associated to its edges (aka. weights)

They are useful to represent distances,
costs, penalties, loads, capacities, times...

/@\@ Weighted Graph Representations

127 | -

Weighted Graph Representations

(V. 5)

(W, 12).(X, 7)

(U, 2),(Y,10)

(W, 6).(Z, 4)

(X, 8)

N < %X = < c

(X, 1).(Z,5)

02

Shortest Path Problem

ttttttttttttttttttttttttttttt
ttttttttttt

/@\@ Finding A Shortest Path

Didn't we say that BFS finds the shortest
path between a pair of vertices in a graph?

Shortest path between vertices W and X?
Call BFS(G, W) and get the path that visits
X.

/©\@ Finding A Shortest Path

Didn't we say that BFS finds the shortest path
between a pair of vertices in a graph?

Shortest path between vertices W and X? Call Q
BFS(G, W) and get the path that visits X.

There! Shortest pathis {W, Y, X} with length
2.

/©\@ Finding A Shortest Path

Didn't we say that BFS finds the shortest path
between a pair of vertices in a graph?

Shortest path between vertices W and X? Call
BFS(G, W) and get the path that visits X.

There! Shortest pathis {W, Y, X} with length 2.

s it?

ll

M Shortest Path Problem

Given a weighted digraph ¢ = {V, E} and
two verticesu, v € V, we need to find a
path of minimum total weight between u
and v.

Shortest Path Properties:

1. Asub path of a shortest path is itself a
shortest path.

2. Thereisatree of shortest paths from a
vertex to every other vertex in the graph.

12

A sub path of
a shortest
path isitself a
shortest path.

Property 1 Example

Source

13

There is a tree of
shortest paths

from a vertex to

every other vertex
in the graph.

Property 2 Example

Source

14

03

DI]kStI‘a sAIgorlthm

ttttttttttttttttt

Edsger W. Dijkstra. "A Note on
Two Problems in Connexion with
Graphs." Numerische
Mathematik, vol. 1, pp. 269-271,
1959.

https://link.springer.com/article/10.1007/BF 01386390

Numerische Mathematik 1, 269271 (1959)

A Note on Two Problems in Connexion with Graphs
By
E. W. D1JKSTRA

We consider # points {nodes), some or all pairs of which are connected by a
branch; the length of each branch is given. We restrict ourselves to the case
where at least one path exists between any two nodes. We now consider two
problems.

Problem 1. Construct the tree of minimum total length between the » nodes.
(A tree is a graph with one and only one path between every two nodes.}

In the course of the construction that we present here, the branches are
subdivided into three sets:

1. ihe branches definitely assigned to the tree wnder construction {they will
form a subtree);

1I. the branches from which the next branch to be added to set I, will be
selected;

111 the remaining branches (rejected or not yet considered).

The nodes are subdivided into two sets:

A. the nodes connected by the branches of set I,

B. the remaining nodes {one and only one branch of set TT will lead to each
af these nodes).

We start the construction by choosing an arbitrary nede as the only member
of set A, and by placing all branches that end in this node in set TI. To start
with, set [is empty. From then onwards we perform the following two steps
repeatedly.

Step 1. The shortest branch of set I is removed from this set and added to
set . As a result ane node is transferred from set B fo set A.

Step 2. Consider the branches leading from the node, that has just been trans-
ferred to set A, to the nodes that are still in set B. If the branch under con-
sideration is longer thaa the corresponding branch in set I1, it is rejected; it it
is shorter, it replaces the corresponding branch in set 11, and the latter is rejected.

We then return to step 1 and repeat the process until sets I and B are empty.
The branches in set 1 {form the tree required.

The solution given here is to be preferred to the solution given by J. B.
KruskaL [1] and those given by H. Loperman and A. WEINBERGER [2]. In
their solutions all the — possibly 2 (s —1) — branches are first of all sorted
according to length. Even if the length of the branches is a computable function
of the node coordinates, their methods demand that data for all branches are
stored simultaneously. Our method only requires the simultaneous storing of

Numer. Math. Bd. 1 19

16

https://link.springer.com/article/10.1007/BF01386390

Dijkstra's Algorithm

Given a digraph G = {V, E} and a source vertex v € V, Dijkstra's algorithm finds the
shortest path from v to every other vertex in the digraph.

Dijkstra’s algorithm is a Greedy Algorithm.

Assumptions:
The digraph is connected.
Edge weights are nonnegative (IMPORTANT)

Analogy: Dijkstra’s algorithm grows a “cloud” of vertices, starting with v, until the cloud
covers all vertices in G. In every step of the algorithm, we insert a new vertex into the
cloud and keep the current shortest distances from v to the current vertices in the cloud.

17

d(u)=50

Edge Relaxation

d(u)=50

d(z) 60

it =

d(z)= m|n{d(z) d(u) + weight(e)}

18

Dijkstra’s

Shortest Path

Algorithm

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > Z
let prev:V >V
let Q be an empty priority queue

dist[s] <« ©
for each v eV do
if v #s then
dist[v] ¢ o
end if
prev[v] « -1
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w eV adjacent to u still in @ do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] « d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

19

Remember:
dist(v) = min(dist(v), dist(u) + weight(u, v))
There is a min-heap Q with all the vertices of the graph

dist=o0
prev =-1

dist=00
prev =-1

dist=o0
prev = -1

20

Remember:
dist(v) = min(dist(v), dist(u) + weight(u, v))
There is a min-heap Q with all the vertices of the graph

dist=4
prev=_0

dist=8
prev=0

21

Remember:
dist(v) = min(dist(v), dist(u) + weight(u, v))
There is a min-heap Q with all the vertices of the graph

dist=12
prev =1

dist=8
prev=0

22

Remember:

dist(v) = min(dist(v), dist(u) + weight(u, v))
There is a min-heap Q with all the vertices of the graph

dist=0
prev =-1

dist=4 dist=12
prev=0 prev=1
8
v

dist=15
prev=3

3
dist=8 dist=9
prev=0 prev=23

23

Remember:

dist(v) = min(dist(v), dist(u) + weight(u, v))
There is a min-heap Q with all the vertices of the graph

dist=0
prev =-1

dist=4 dist=12
prev=0 prev=1
8
v

dist=15
prev=3

dist =19
prev =4

3
dist=8 dist=9
prev=0 prev=23

24

Remember:

dist(v) = min(dist(v), dist(u) + weight(u, v))
There is a min-heap Q with all the vertices of the graph

dist=0
prev =-1

dist=4 dist=12
prev=0 prev=1
8
Wy,

dist=14
prev =2

dist =19
prev =4

3
dist=8 dist=9
prev=0 prev=23

25

Remember:

dist(v) = min(dist(v), dist(u) + weight(u, v))
There is a min-heap Q with all the vertices of the graph

dist=0
prev =-1

dist=4 dist=12
prev=0 prev=1
8
Wy,

dist=14
prev =2

dist =19
prev =4

3
dist=8 dist=9
prev=0 prev=23

26

Remember:

dist(v) = min(dist(v), dist(u) + weight(u, v))
There is a min-heap Q with all the vertices of the graph

dist=0
prev =-1

dist=4 dist=12
prev=0 prev=1
8
Wy,

dist=14
prev =2

dist =19
prev =4

3
dist=8 dist=9
prev=0 prev=23

27

algorithm DijkstraShortestPath(G(V,E), s€V)

let dist:V > Z
let prev:V -V
let Q be an empty priority queue

dist[s] <« ©
for each veV do
if v# s then
dist[v] « o
end if
prev[v] <« -1
Q.add(dist[v], v)
end for

while Q is not empty do
u « Q.getMin()
for each w €V adjacent to u still in Q do
d « dist[u] + weight(u, w)
if d < dist[w] then
dist[w] <« d
previw] « u
Q.set(d, w)
end if
end for
end while

return dist, prev
end algorithm

Remember: G has nonnegative weight
values.

Observations:

* Weassume Q is a binary heap.

* (Q.set(a, b) updates the location of a
value b based on a new key a.

Runtime:

 Initializing arrays: O(|V])

« Adding vertices to Q: O(|V|1log(|V]))

* Checkingif avertexisin Q: 0(1)!

* Resetting values in the arrays (aka. Edge
relaxation): O(|E|)

* Resettingvaluesin Q: O(|E|log(]V|))!

Dijkstra's Runtime: O((IV| + |E]) log(|V]))
We can also say O(|E| log(|V])) since every
vertex is connected to at least one edge.

O

28

Runtime Considerations

Checking if a vertexisin Q: O(1)!

The algorithm must maintain a link between vertices and their positions in the
queue (e.qg., an array of size |V| that get updated whenever a vertex changes
positionin Q). This allows checking is a vertexisin Q in 0(1).

Resetting values in Q: O(|E|log(|V]))!
When a key gets updated, at most log(|V|) vertex positions will have to be updated
as the heap is rearranged. So, updating a key can be done in O(log(|V])).

Internet says Dijkstra’s runtime is O(|E| + |V]log(|V]))
Yes, it is true if we keep track of vertices using a Fibonacci Heap (out of the scope
of this course)instead of a Priority Queue implemented with a Binary Heap.

29

Don't use Dijkstra’s
algorithm with
negative weights

Remember that Dijkstra's
algorithm is Greedy. Which means
the algorithm chooses the best
option in every iteration.

A negative weight will reduce
distances to vertices outside of the
cloud. Inserting a vertex incident
to a “negative” edge messes up
with the distances already in the
cloud.

30

Source

Spoiler alert: Dijkstra should relax an already relaxed vertex.

Try yo'self

31

We're done

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by
Stories

32

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Weighted Graph
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Weighted Graph
	Slide 5: Weighted Graph
	Slide 6: Weighted Graph Representations
	Slide 7: Weighted Graph Representations
	Slide 8: Shortest Path Problem
	Slide 9: Finding A Shortest Path
	Slide 10: Finding A Shortest Path
	Slide 11: Finding A Shortest Path
	Slide 12: Shortest Path Problem
	Slide 13: Property 1 Example
	Slide 14: Property 2 Example
	Slide 15: Dijkstra’s Algorithm
	Slide 16: Edsger W. Dijkstra. "A Note on Two Problems in Connexion with Graphs." Numerische Mathematik, vol. 1, pp. 269-271, 1959.
	Slide 17: Dijkstra’s Algorithm
	Slide 18: Edge Relaxation
	Slide 19: Dijkstra’s Shortest Path Algorithm
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Runtime Considerations
	Slide 30: Don’t use Dijkstra’s algorithm with negative weights
	Slide 31: Try yo’self
	Slide 32: We’re done

