
Weighted 
Graph

CS 251 - Data Structures 
and Algorithms



Note:
Slides complement the 

discussion in class

2



Table of Contents
When edges have info
Weighted Graph

Shortest Path Problem
Finding the shortest path 
between two vertices

Dijkstra’s Algorithm
Let’s find them paths

01

02

03

3



Weighted Graph
01

When edges have info

4



Weighted Graph

U

V

X

W

Z

Y

10

8

2

5 7

12

6 1

4

5

A weighted graph is a graph with values 
associated to its edges (aka. weights)

They are useful to represent distances, 
costs, penalties, loads, capacities, times…

5



Weighted Graph Representations

U

V

X

W

Z

Y

10

8

2

5 7

12

6 1

4

5

U V W X Y Z

U - 5 - - - -

V - - 12 7 - -

W 2 - - - 10 -

X - - 6 - - 4

Y - - - 8 - -

Z - - - 1 - 5

6



Weighted Graph Representations

U

V

X

W

Z

Y

10

8

2

5 7

12

6 1

4

5

U (V, 5)

V (W, 12), (X, 7)

W (U, 2), (Y, 10)

X (W, 6), (Z, 4)

Y (X, 8)

Z (X, 1), (Z, 5)

7



Shortest Path Problem
02

Finding the shortest path between 
two vertices

8



Finding A Shortest Path

Didn't we say that BFS finds the shortest 
path between a pair of vertices in a graph?

Shortest path between vertices W and X? 
Call BFS(𝐺, W) and get the path that visits 
X.

U

V

X

W

Z

Y

9



Finding A Shortest Path

Didn't we say that BFS finds the shortest path 
between a pair of vertices in a graph?

Shortest path between vertices W and X? Call 
BFS(𝐺, W) and get the path that visits X.

There! Shortest path is {W, Y, X} with length 
2.

U

V

X

W

Z

Y

10



Finding A Shortest Path

Didn't we say that BFS finds the shortest path 
between a pair of vertices in a graph?

Shortest path between vertices W and X? Call 
BFS(𝐺, W) and get the path that visits X.

There! Shortest path is {W, Y, X} with length 2.

Is it?

U

V

X

W

Z

Y

10

8

2

5 7

12

6 1

4

5

11



Shortest Path Problem

Given a weighted digraph 𝐺 = {𝑉, 𝐸} and 
two vertices 𝑢, 𝑣 ∈ 𝑉, we need to find a 
path of minimum total weight between 𝑢
and 𝑣.

Shortest Path Properties:
1. A sub path of a shortest path is itself a 

shortest path.
2. There is a tree of shortest paths from a 

vertex to every other vertex in the graph.

U

V

X

W

Z

Y

10

8

2

5 7

12

6 1

4

5

12



Property 1 Example

HNL

LAX

SFO

DFW

ORD

LGA

MIA

PVD

2555

337

1843

1743

1233

802

849

1387

1120

1099

1205

142

Source

Target

A sub path of 
a shortest 

path is itself a 
shortest path.

13



Property 2 Example

HNL

LAX

SFO

DFW

ORD

LGA

MIA

PVD

2555

337

1843

1743

1233

802

849

1387

1120

1099

1205

142

Source
There is a tree of 

shortest paths 
from a vertex to 

every other vertex 
in the graph.

14



Dijkstra’s Algorithm
03

Let’s find them paths

15



Edsger W. Dijkstra. "A Note on 
Two Problems in Connexion with 

Graphs." Numerische
Mathematik, vol. 1, pp. 269-271, 

1959.

16https://link.springer.com/article/10.1007/BF01386390

https://link.springer.com/article/10.1007/BF01386390


Dijkstra’s Algorithm

1. Given a digraph 𝐺 = {𝑉, 𝐸} and a source vertex 𝑣 ∈ 𝑉, Dijkstra's algorithm finds the 
shortest path from 𝑣 to every other vertex in the digraph.

2. Dijkstra’s algorithm is a Greedy Algorithm.

3. Assumptions:
• The digraph is connected.
• Edge weights are nonnegative (IMPORTANT)

4. Analogy: Dijkstra’s algorithm grows a “cloud” of vertices, starting with 𝑣, until the cloud 
covers all vertices in 𝐺. In every step of the algorithm, we insert a new vertex into the 
cloud and keep the current shortest distances from 𝑣 to the current vertices in the cloud.

17



Edge Relaxation

s

u z

d(u) = 50

d(z) = 75

e: 10

s

u z

d(u) = 50 d(z) = 60
e: 10

d(z) = min{d(z), d(u) + weight(e)}

18



Dijkstra’s 
Shortest Path 

Algorithm

algorithm DijkstraShortestPath(𝐺 𝑉, 𝐸 , 𝑠 ∈ 𝑉)

let dist:𝑉 → ℤ
let prev:𝑉 → 𝑉
let 𝑄 be an empty priority queue

dist[𝑠] ← 0
for each 𝑣 ∈ 𝑉 do

if 𝑣 ≠ 𝑠 then
dist[𝑣] ← ∞

end if
prev[𝑣] ← -1
𝑄.add(dist[𝑣], 𝑣)

end for

while 𝑄 is not empty do
𝑢 ← 𝑄.getMin()
for each 𝑤 ∈ 𝑉 adjacent to 𝑢 still in 𝑄 do

d ← dist[𝑢] + weight(𝑢, 𝑤)
if d < dist[𝑤] then

dist[𝑤] ← d
prev[𝑤] ← 𝑢
𝑄.set(d, 𝑤)

end if
end for

end while

return dist, prev
end algorithm

19



0

1

3

2

5

4

6dist = 0
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

4

8

8

11

2

6
7

1

9

10

Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph

20



0

1

3

2

5

4

6dist = 0
prev = -1

dist = 4
prev = 0

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = 8
prev = 0

4

8

8

11

2

6
7

1

9

10

Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph

21



0

1

3

2

5

4

6dist = 0
prev = -1

dist = 4
prev = 0

dist = 12
prev = 1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = ∞
prev = -1

dist = 8
prev = 0

4

8

8

11

2

6
7

1

9

10

Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph

22



0

1

3

2

5

4

6dist = 0
prev = -1

dist = 4
prev = 0

dist = 12
prev = 1

dist = ∞
prev = -1

dist = 15
prev = 3

dist = 9
prev = 3

dist = 8
prev = 0

4

8

8

11

2

6
7

1

9

10

Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph

23



0

1

3

2

5

4

6dist = 0
prev = -1

dist = 4
prev = 0

dist = 12
prev = 1

dist = 19
prev = 4

dist = 15
prev = 3

dist = 9
prev = 3

dist = 8
prev = 0

4

8

8

11

2

6
7

1

9

10

Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph

24



0

1

3

2

5

4

6dist = 0
prev = -1

dist = 4
prev = 0

dist = 12
prev = 1

dist = 19
prev = 4

dist = 14
prev = 2

dist = 9
prev = 3

dist = 8
prev = 0

4

8

8

11

2

6
7

1

9

10

Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph

25



0

1

3

2

5

4

6dist = 0
prev = -1

dist = 4
prev = 0

dist = 12
prev = 1

dist = 19
prev = 4

dist = 14
prev = 2

dist = 9
prev = 3

dist = 8
prev = 0

4

8

8

11

2

6
7

1

9

10

Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph

26



0

1

3

2

5

4

6dist = 0
prev = -1

dist = 4
prev = 0

dist = 12
prev = 1

dist = 19
prev = 4

dist = 14
prev = 2

dist = 9
prev = 3

dist = 8
prev = 0

4

8

8

11

2

6
7

1

9

10

Remember:
dist 𝑣 = min 𝑑𝑖𝑠𝑡 𝑣 , dist 𝑢 + weight(𝑢, 𝑣)
There is a min-heap Q with all the vertices of the graph

27



Remember: 𝐺 has nonnegative weight 
values.

Observations:
• We assume 𝑄 is a binary heap.
• 𝑄.set(𝑎, 𝑏) updates the location of a 

value 𝑏 based on a new key 𝑎.

Runtime:
• Initializing arrays: 𝑂 𝑉
• Adding vertices to 𝑄: 𝑂 𝑉 log 𝑉
• Checking if a vertex is in 𝑄: 𝑂(1)!
• Resetting values in the arrays (aka. Edge 

relaxation): 𝑂 𝐸
• Resetting values in 𝑄: 𝑂 𝐸 log 𝑉 !

Dijkstra’s Runtime: 𝑂 𝑉 + 𝐸 log 𝑉

We can also say 𝑂 𝐸 log 𝑉 since every 
vertex is connected to at least one edge.

28

algorithm DijkstraShortestPath(𝐺 𝑉, 𝐸 , 𝑠 ∈ 𝑉)

let dist:𝑉 → ℤ
let prev:𝑉 → 𝑉
let 𝑄 be an empty priority queue

dist[𝑠] ← 0
for each 𝑣 ∈ 𝑉 do

if 𝑣 ≠ 𝑠 then
dist[𝑣] ← ∞

end if
prev[𝑣] ← -1
𝑄.add(dist[𝑣], 𝑣)

end for

while 𝑄 is not empty do
𝑢 ← 𝑄.getMin()
for each 𝑤 ∈ 𝑉 adjacent to 𝑢 still in 𝑄 do

d ← dist[𝑢] + weight(𝑢, 𝑤)
if d < dist[𝑤] then

dist[𝑤] ← d
prev[𝑤] ← 𝑢
𝑄.set(d, 𝑤)

end if
end for

end while

return dist, prev
end algorithm



Runtime Considerations

Checking if a vertex is in 𝑄: 𝑂(1)!
The algorithm must maintain a link between vertices and their positions in the 
queue (e.g., an array of size 𝑉 that get updated whenever a vertex changes 
position in 𝑄). This allows checking is a vertex is in 𝑄 in 𝑂(1).

Resetting values in 𝑄: 𝑂 𝐸 log 𝑉 !
When a key gets updated, at most log 𝑉 vertex positions will have to be updated 
as the heap is rearranged. So, updating a key can be done in 𝑂 log 𝑉 .

Internet says Dijkstra’s runtime is 𝑂 𝐸 + 𝑉 log 𝑉
Yes, it is true if we keep track of vertices using a Fibonacci Heap (out of the scope 
of this course) instead of a Priority Queue implemented with a Binary Heap.

29



Don’t use Dijkstra’s 
algorithm with 

negative weights

Remember that Dijkstra’s 
algorithm is Greedy. Which means 
the algorithm chooses the best 
option in every iteration.

A negative weight will reduce 
distances to vertices outside of the 
cloud. Inserting a vertex incident 
to a “negative” edge messes up
with the distances already in the 
cloud.

30



Try yo’self

A

B C

D E

F

4

-3

5
-2

-4

4

3

1

2

Source Target

Spoiler alert: Dijkstra should relax an already relaxed vertex. 31



Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including 
icons by Flaticon, infographics & images by Freepik and illustrations by 

Stories

We’re done
Do you have any questions?

32

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Weighted Graph
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Weighted Graph
	Slide 5: Weighted Graph
	Slide 6: Weighted Graph Representations
	Slide 7: Weighted Graph Representations
	Slide 8: Shortest Path Problem
	Slide 9: Finding A Shortest Path
	Slide 10: Finding A Shortest Path
	Slide 11: Finding A Shortest Path
	Slide 12: Shortest Path Problem
	Slide 13: Property 1 Example
	Slide 14: Property 2 Example
	Slide 15: Dijkstra’s Algorithm
	Slide 16: Edsger W. Dijkstra. "A Note on Two Problems in Connexion with Graphs." Numerische Mathematik, vol. 1, pp. 269-271, 1959.
	Slide 17: Dijkstra’s Algorithm
	Slide 18: Edge Relaxation
	Slide 19: Dijkstra’s Shortest Path Algorithm
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Runtime Considerations
	Slide 30: Don’t use Dijkstra’s algorithm with negative weights
	Slide 31: Try yo’self
	Slide 32: We’re done

